Constant - Wall - Temperature Nusselt Number in Micro and Nano - Channels 1

نویسندگان

  • Nicolas G. Hadjiconstantinou
  • Olga Simek
چکیده

We investigate the constant-wall-temperature convective heat-transfer characteristics of a model gaseous flow in two-dimensional micro and nano-channels under hydrodynamically and thermally fully developed conditions. Our investigation covers both the slip-flow regime 0<Kn<0.1, and most of the transition regime 0.1,Kn<10, where Kn, the Knudsen number, is defined as the ratio between the molecular mean free path and the channel height. We use slip-flow theory in the presence of axial heat conduction to calculate the Nusselt number in the range 0<Kn<0.2, and a stochastic molecular simulation technique known as the direct simulation Monte Carlo (DSMC) to calculate the Nusselt number in the range 0.02,Kn,2. Inclusion of the effects of axial heat conduction in the continuum model is necessary since small-scale internal flows are typically characterized by finite Peclet numbers. Our results show that the slip-flow prediction is in good agreement with the DSMC results for Kn<0.1, but also remains a good approximation beyond its expected range of applicability. We also show that the Nusselt number decreases monotonically with increasing Knudsen number in the fully accommodating case, both in the slip-flow and transition regimes. In the slip-flow regime, axial heat conduction is found to increase the Nusselt number; this effect is largest at Kn50 and is of the order of 10 percent. Qualitatively similar results are obtained for slip-flow heat transfer in circular tubes. @DOI: 10.1115/1.1447931#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofluid forced convection through a microtube with constant heat flux and slip boundary

    Given the need to increase the efficiency of heat transfer in thermal systems, especially systems using nanofluids in microscale and nanoscale heat transfer equipment ideas to improve their performance is very good.In present study, the flow and heat transfer of Water-Cu nanofluid in micro-tube with slip regime with constant wall heat flux numerically simulated with low Reynolds numbers. Sl...

متن کامل

Heat transfer in MHD square duct flow of nanofluid with discrete heat sources

The effect of thermal and solutal buoyancy induced by a discrete source of heat and mass transfer in a square duct under the influence of magnetic field, especially at the turbulent regime for the first time is reported. Al2O3/water nanofluid is used with constant heat flux from three discrete heat sources. In the present study, the effects of Reynolds number (100 to 3000), particle volume frac...

متن کامل

MHD Natural Convection and Entropy Generation of Variable Properties Nanofluid in a Triangular Enclosure

Natural convection heat transfer has many applications in different fields of industry; such as cooling industries, electronic transformer devices and ventilation equipment; due to simple process, economic advantage, low noise and renewed retrieval. Recently, heat transfer of nanofluids have been considered because of higher thermal conductivity coefficient compared with those of ordinary fluid...

متن کامل

A model for enhanced heat transfer in an enclosure using Nano-aerosols

In this study, the behavior of nanoparticles using a numerical model is discussed. For this study a model for the expansion in free convection heat transfer and mix in a rectangular container with dimensions of 1 × 4 cm using Nano-aerosols in the air is going when copper nanoparticles, use and by changing the temperature difference between hot and cold wall, we will examine its impact on the ra...

متن کامل

Mixed convection fluid flow and heat transfer and optimal distribution of discrete heat sources location in a cavity filled with nanofluid

Mixed convection fluid flow and heat transfer of water-Al2O3 nanofluid inside a lid-driven square cavity has been examined numerically in order to find the optimal distribution of discrete heat sources on the wall of a cavity. The effects of different heat source length, Richardson number and Grashof number on optimal heat source location has been investigated. Moreover, the average Nusselt num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002